Aufgabe 1: Reihen

- a) Überprüfen Sie mit Hilfe des Integralkriteriums ob die Reihe $R = \sum_{n=1}^{\infty} \frac{1}{n^2}$ konvergiert.
- b) Ermitteln Sie den Konvergenzradius der Reihe $g(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n!}$
- c) Berechnen Sie $\int g(x)dx$

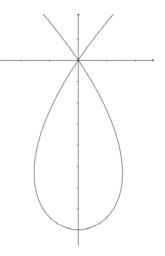
Aufgabe 2: Parametrisierte Funktionen

Gegeben ist folgende Kurve in parametrischer Form:

$$x = t \left(t^2 - 4 \right)$$

$$x = t \left(t^2 - 4 \right) \qquad \qquad y = 4 \left(t^2 - 4 \right)$$

- a) Für welche Werte von t geht die Kurve durch den Ursprung?
- b) Bestimmen Sie die Werte von t, in denen die Tangente horizontal ist.
- c) Bestimmen Sie die Werte von t, in denen die Tangente vertikal ist.
- d) Berechnen Sie die eingeschlossene Fläche.



Aufgabe 3: Reihenentwicklung

- a) Entwickeln Sie eine MacLaurin-Reihe für $f(x) = \frac{1}{(1+x)^2}$
- b) Gesucht ist die Taylor-Reihe für $f(x) = e^{2x}$ im Entwicklungspunkt a = 1

Aufgabe 4: Integrale

Lösen Sie folgende Integrale:

a)
$$I = \int \frac{1}{(2-x)} \cdot \ln(2-x) dx$$

b)
$$f(x) = \int_{0}^{4} |1 - x^{2}| dx$$

Aufgabe 5: Flächen und Volumen

Die Kurven y = x und $y = \sqrt{x}$ schließen eine Fläche ein.

- a) Berechnen Sie diese Fläche.
- b) Berechnen Sie das Volumen, das entsteht, wenn diese Fläche um die Achse y = 1 rotiert.